print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
11/01/2017 (Added to site)
Author(s): Garcia, P.A.; Ge, Z.; Kelley, L. A.; Holcomb, S. J.; Buie, C. R.

High efficiency hydrodynamic bacterial electrotransformation

Journal: Lab On A Chip, 17/3 (2017), pp. 490-500
DOI: 10.1039/c6lc01309k
Tell your friend  | 

Abstract: Synthetic biology holds great potential for addressing pressing challenges for mankind and our planet. One technical challenge in tapping into the full potential of synthetic biology is the low efficiency and low throughput of genetic transformation for many types of cells. In this paper, we discuss a novel microfluidic system for improving bacterial electrotransformation efficiency and throughput. Our microfluidic system is comprised of non-uniform constrictions in microchannels to facilitate high electric fields with relatively small applied voltages to induce electroporation. Additionally, the microfluidic device has regions of low electric field to assist in electrophoretic transport of nucleic acids into the cells. The device features hydrodynamically controlled electric fields that allow cells to experience a time dependent electric field that is otherwise difficult to achieve using standard electronics. Results suggest that transformation efficiency can be increased by ∼4×, while throughput can increase by 100-1000× compared to traditional electroporation cuvettes. This work will enable high-throughput and high efficiency genetic transformation of microbes, facilitating accelerated development of genetically engineered organisms.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: