print small

Participating Countries:

Algeria

Argentina

Australia

Austria

Belgium

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic

Denmark

Finland

France

FYR of Macedonia

Germany

Greece

Iceland

Ireland

Israel

Italy

Lithuania

Morocco

Netherlands

New Zealand

Poland

Portugal

Romania

Russian Federation

Serbia

Slovenia

Spain

Sweden

Switzerland

Turkey

Ukraine

United Kingdom

United States

Member area provided by LTFE
COST is supported by the EU Framework Programme Horizon 2020
This website is supported by COST
11/01/2017 (Added to site)
Author(s): Rossmeisl, J. H. Jr.; Garcia, P. A.; Pancotto, T. E.; Robertson, J. L.; Henao-Guerrero, N.; Neal, R. E. 2nd; Ellis, T. L.; Davalos, R. V.

Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas

Journal: Journal of Neurosurgery, 123/4 (2015), pp. 1008-1025
DOI: 10.3171/2014.12.JNS141768
Tell your friend  | 

Abstract:

Object: Irreversible electroporation (IRE) is a novel nonthermal ablation technique that has been used for the treatment of solid cancers. However, it has not been evaluated for use in brain tumors. Here, the authors report on the safety and feasibility of using the NanoKnife IRE system for the treatment of spontaneous intracranial gliomas in dogs.

Methods: Client-owned dogs with a telencephalic glioma shown on MRI were eligible. Dog-specific treatment plans were generated by using MRI-based tissue segmentation, volumetric meshing, and finite element modeling. After biopsy confirmation of glioma, IRE treatment was delivered stereotactically with the NanoKnife system using pulse parameters and electrode configurations derived from therapeutic plans. The primary end point was an evaluation of safety over the 14 days immediately after treatment. Follow-up was continued for 12 months or until death with serial physical, neurological, laboratory, and MRI examinations.

Results: Seven dogs with glioma were treated. The mean age of the dogs was 9.3 ± 1.6 years, and the mean pretreatment tumor volume was 1.9 ± 1.4 cm(3). The median preoperative Karnofsky Performance Scale score was 70 (range 30-75). Severe posttreatment toxicity was observed in 2 of the 7 dogs; one developed fatal (Grade 5) aspiration pneumonia, and the other developed treatment-associated cerebral edema, which resulted in transient neurological deterioration. Results of posttreatment diagnostic imaging, tumor biopsies, and neurological examinations indicated that tumor ablation was achieved without significant direct neurotoxicity in 6 of the 7 dogs. The median 14-day post-IRE Karnofsky Performance Scale score of the 6 dogs that survived to discharge was 80 (range 60-90), and this score was improved over the pretreatment value in every case. Objective tumor responses were seen in 4 (80%) of 5 dogs with quantifiable target lesions. The median survival was 119 days (range 1 to > 940 days).

Conclusion: With the incorporation of additional therapeutic planning procedures, the NanoKnife system is a novel technology capable of controlled IRE ablation of telencephalic gliomas.



Project Office

Working groups

Steering Committee

Founding members

DC Rapporteurs

Related sites: